Fabrication of a Macroporous Microwell Array for Surface-Enhanced Raman Scattering
نویسندگان
چکیده
Here, a colloidal templating procedure for generating high-density arrays of gold macroporous microwells, which act as discrete sites for surfaceenhanced Raman scattering (SERS), is reported. Development of such a novel array with discrete macroporous sites requires multiple fabrication steps. First, selective wet-chemical etching of the distal face of a coherent optical fiber bundle produces a microwell array. The microwells are then selectively filled with a macroporous structure by electroless template synthesis using self-assembled nanospheres. The fabricated arrays are structured at both the micrometer and nanometer scale on etched imaging bundles. Confocal Raman microscopy is used to detect a benzenethiol monolayer adsorbed on the macroporous gold and to map the spatial distribution of the SERS signal. The Raman enhancement factor of the modified wells is investigated and an average enhancement factor of 4T 10 is measured. This demonstrates that such nanostructured wells can enhance the local electromagnetic field and lead to a platform of ordered SERS-active micrometer-sized spots defined by the initial shape of the etched optical fibers. Since the fabrication steps keep the initial architecture of the optical fiber bundle, such ordered SERS-active platforms fabricated onto an imaging waveguide open new applications in remote SERS imaging, plasmonic devices, and integrated electro-optical sensor arrays.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملDetection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملLiposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate.
A novel immunoassay based on surface-enhanced Raman scattering (SERS) has been developed. The method exploits the SERS-derived signal from reporter molecules (crystal violet, CV) encapsulated in antibody-modified liposome particles. The antigen is firstly captured by the primary antibody immobilized in microwell plates and then sandwiched by secondary antibody-modified liposome. The CV molecule...
متن کاملFabrication of Ordered Mullite Nanowhisker Array with Surface Enhanced Raman Scattering Effect
Mullite nanowhiskers are prepared by a facile technique at low temperature using mica and AlF3 as raw material. Mica acts as reactant as well as substrate. By controlling the reaction temperature and holding time, the mullite nanowhisker array with uniform morphology is obtained. The nanowhisker array possesses Al-rich single crystalline with an average of 80 nm in diameter and 20 μm in length....
متن کاملAg nanodot array as a platform for surface-enhanced Raman scattering
Well-ordered Ag nanodot array on indium-tin-oxide (ITO) glass is adopted as a sensor platform based on surface-enhanced Raman scattering (SERS). SERS has attracted extensive attention in the development of sensitive chemical or biological sensors due to its property of the amplification of electromagnetic fields on a metal nanostructure. The key issue for the applications of SERS is to secure t...
متن کامل